Ensemble clustering with a fuzzy approach
نویسندگان
چکیده
Ensemble clustering is a novel research field that extends to unsupervised learning the approach originally developed for classification and supervised learning problems. In particular ensemble clustering methods have been developed to improve the robustness and accuracy of clustering algorithms, as well as the ability to capture the structure of complex data. In many clustering applications an example may belong to multiple clusters, and the introduction of fuzzy set theory concepts can improve the level of flexibility needed to model the uncertainty underlying real data in several application domains. In this paper, we propose an unsupervised fuzzy ensemble clustering approach that permit to dispose both of the flexibility of the fuzzy sets and the robustness of the ensemble methods. Our algorithmic scheme can generate different ensemble clustering algorithms that allow to obtain the final consensus clustering both in crisp and fuzzy formats.
منابع مشابه
A new ensemble clustering method based on fuzzy cmeans clustering while maintaining diversity in ensemble
An ensemble clustering has been considered as one of the research approaches in data mining, pattern recognition, machine learning and artificial intelligence over the last decade. In clustering, the combination first produces several bases clustering, and then, for their aggregation, a function is used to create a final cluster that is as similar as possible to all the cluster bundles. The inp...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملAn unsupervised fuzzy ensemble algorithmic scheme for gene expression data analysis
Background: In recent years unsupervised ensemble clustering methods have been successfully applied to DNA microarray data analysis to improve the accuracy and the reliability of clustering results. Nevertheless, a major problem is represented by the fact that classes of functionally correlated examples (e.g. subclasses of diseases characterized at bio-molecular level) are not in general clearl...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کامل